Modeling of collective swimming in random bacterial suspensions

نویسنده

  • Leonid Berlyand
چکیده

Bacteria are the most abundant organisms on Earth and they significantly influence carbon cycling and sequestration, decomposition of biomass, and transformation of contaminants in the environment. This motivates our study of the basic principles of bacterial behavior and its control. The principal mechanism behind the unique macroscopic properties of bacterial suspensions (e.g., 7-fold reduction of the effective viscosity and a 10-fold increase of the effective diffusivity) is selforganization of the bacteria at the microscopic level – a multiscale phenomenon. Our goal is the understanding the mechanism of self-organization, which is a fundamental issue in the study of biological and inanimate systems. Our work in this area includes • Analytical and numerical study of dilute and semi-dilute bacterial suspensions. We introduced a so-called semi-dilute model for swimming bacteria that includes pairwise interactions and obtained an explicit asymptotic formula for the effective viscosity in terms of known physical parameters. This formula is compared with that derived in our PDE model for a dilute suspension of bacteria driven by a stochastic torque, which models random reorientation of bacteria (“tumbling”). This comparison leads to a phenomenon of stochasticity arising from a deterministic system is referred to as self-induced noise. We also conducted numerical modeling of a large number of interacting bacteria using Graphical Processing Units (GPU). • Kinetic collisional model–work in progress. We seek to capture a phase transition in the bacterial suspension – an appearance of correlations and local preferential alignment with an increase of concentration. Collisions of the bacteria, ignored in most of the previous works, play an important role in this study. Collaborators: PSU students S. Ryan and B. Haines, and DOE scientists I. Aronson and D. Karpeev (both Argonne Nat. Lab)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlation properties of collective motion in bacterial suspensions.

The study of collective motion in bacterial suspensions has been of significant recent interest. To better understand the non-trivial spatio-temporal correlations emerging in the course of collective swimming in suspensions of motile bacteria, a simple model is employed: a bacterium is represented as a force dipole with size, through the use of a short-range repelling potential, and shape. The ...

متن کامل

Kinetic models of swimming bacteria in semi-dilute limit Project: Coarse-graining techniques for modeling highly heterogeneous complex biomaterials

Bacteria are the most abundant organisms on Earth and they significantly influence carbon cycling and sequestration, decomposition of biomass, and transformation of contaminants in the environment. Therefore, an understanding of the basic principles of bacterial behavior and its control is of natural importance to the DOE mission. With this in mind, we have conducted analytical, numerical and e...

متن کامل

PDE models of collective swimming in bacterial suspensions

Bacteria are the most abundant organisms on Earth and they significantly influence carbon cycling and sequestration, decomposition of biomass, and transformation of contaminants in the environment. This motivates our study of the basic principles of bacterial behavior and its control. The principal mechanism behind the unique macroscopic properties of bacterial suspensions (e.g., 7-fold reducti...

متن کامل

Enhanced mixing and spatial instability in concentrated bacterial suspensions.

High-resolution optical coherence tomography is used to study the onset of a large-scale convective motion in free-standing thin films of adjustable thickness containing suspensions of swimming aerobic bacteria. Clear evidence is found that beyond a threshold film thickness there exists a transition from quasi-two-dimensional collective swimming to three-dimensional turbulent behavior. The latt...

متن کامل

Suspension biomechanics of swimming microbes.

Micro-organisms play a vital role in many biological, medical and engineering phenomena. Some recent research efforts have demonstrated the importance of biomechanics in understanding certain aspects of micro-organism behaviours such as locomotion and collective motions of cells. In particular, spatio-temporal coherent structures found in a bacterial suspension have been the focus of many resea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012